

1 Review

2

Recent Advances in the Classification of 3 Bladder Cancer – Updates from the 5th 4 Edition of the World Health Organization 5 Classification of the Urinary and Male 6 Genital Tumors

7 Charles C. Guo^a, Steven S. Shen^b and Bogdan Czerniak^{a,*}

8 ^a*Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA*

9 ^b*Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, TX, USA*

10 Received 24 October 2022

11 Accepted 20 January 2023

12 Pre-press 1 February 2023

13 **Abstract.**

14 **BACKGROUND:** The World Health Organization Classification (WHO) of Urinary and Male Genital Tumors has recently
15 been updated to its 5th edition. The new edition presents a comprehensive approach to the classification of urinary and male
16 genital tumors with an incorporation of morphologic, clinical, and genomic data.

17 **OBJECTIVE:** This review aims to update the new classification of bladder cancer in the 5th edition and to highlight important
18 changes in nomenclature, diagnostic criteria, and molecular characterization, as compared to the 4th edition.

19 **METHODS:** The pathologic classification of bladder cancer in the 5th edition of WHO Classification of Urinary and Male
20 Genital Tumours was compared to that in the 4th edition. PubMed was searched using key words, including bladder cancer,
21 WHO 1973, WHO 1998, WHO 2004, WHO 2016, histology, pathology, genomics, and molecular classification in the time
22 frame from 1973 to August of 2022. Other relevant papers were also consulted, resulting in the selection of 81 papers as
23 references.

24 **RESULTS:** The binary grading of papillary urothelial carcinoma (UC) is practical, but it may be oversimplified and contribute
25 to “grade migration” in recent years. An arbitrary cutoff (5%) has been proposed for bladder cancers with mixed grades. The
26 diagnosis of papillary urothelial neoplasm with low malignant potential has been dramatically reduced in recent years because
27 of overlapping morphology and treatment with low-grade papillary UC. An inverted growth pattern should be distinguished
28 from true (or destructive) stromal invasion in papillary UC. Several methods have been proposed for pT1 tumor substaging, but
29 it is often challenging to substage pT1 tumors in small biopsy specimens. Bladder UC shows a high tendency for divergent
30 differentiation, leading to several distinct histologic subtypes associated with an aggressive clinical behavior. Molecular
31 classification based on the genomic analysis may be a useful tool in the stratification of patients for optimal treatment.

*Correspondence to: Bogdan Czerniak, MD, PhD, Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030,

USA. Tel.: +1 713 794 1025; Fax: +1 713 792 4049; E-mail: bczernia@mdanderson.org.

32 **CONCLUSIONS:** The 5th edition of WHO Classification of Urinary and Male Genital Tumours has made several significant
33 changes in the classification of bladder cancer. It is important to be aware of these changes and to incorporate them into
34 routine clinical practice.

35 **Keywords:** Bladder cancer, WHO, urothelial carcinoma, grading, staging, heterogeneity, molecular classification, histologic
36 subtypes

32 INTRODUCTION

33 Bladder cancer is a common malignancy with a
34 global incidence of 573, 278 new cases in 2020, rep-
35 resenting 3% of all human cancers [1]. The incidence
36 of bladder cancer is four times higher in men than in
37 women, making it the 6th most common cancer in
38 men [2, 3]. Bladder cancer is generally more preva-
39 lent in developed countries compared to developing
40 nations [4]. In the United States, bladder cancer is
41 the 4th most common cancer in men affecting 81,180
42 new patients per year and causing 17,100 deaths in
43 2021 [3]. The most common type of bladder cancers
44 is urothelial carcinoma (UC), which represents more
45 than 90% of all bladder cancers in the Western coun-
46 tries. Bladder UCs originate from precursor lesions
47 in the urothelium and progress along dual-track,
48 referred to as papillary and non-papillary, which leads
49 to clinically and morphologically different forms of
50 the disease [5, 6]. The classification of bladder cancer
51 has undergone several modifications in recent years
52 [7–11], incorporating new molecular and genomic
53 data into the classification scheme which holds
54 the promise to improve the diagnosis, treatment,
55 and prognosis of patients affected by this disease
56 [12–14].

57 The 5th edition of World Health Organization
58 (WHO) Classification of the Urinary and Male
59 Genital Tumours provides a timely update on the
60 pathology and genomics of neoplastic diseases in
61 the bladder [15]. The time interval between the 5th
62 edition and the 4th edition is 6 years, only half of
63 that between the 4th edition and 3rd edition [7, 10,
64 16]. Nonetheless, there have been significant new
65 advancements in the histology and genomics of blad-
66 der cancer which have been included in this edition. In
67 this review, we will emphasize new approaches to the
68 diagnosis, nomenclature, cancer grading, and molec-
69 ular features of urothelial tumors. Non-urothelial
70 tumors, neuroendocrine, mesenchymal, and other
71 neoplastic diseases are beyond the scope of this sum-
72 mary.

32 METHODS

73 The classification of bladder cancer in the 5th edi-
74 tion of WHO Classification of Urinary and Male
75 Genital Tumours was compared to that in the 4th
76 edition, which revealed several significant changes,
77 including cancer grading, histologic subtypes, and
78 molecular classification based on genomic analysis.
79 Literature search performed in Pubmed using the key
80 words, including bladder cancer, WHO 1973, WHO
81 1998, WHO 2004, WHO 2016, histology, pathology,
82 grading, staging, T1 substaging, histologic variants
83 or subtypes, genomic analysis, and molecular clas-
84 sification in the time frame from 1973 to August of
85 2022. A total of 81 related papers and publications
86 were selected as references.

73 RESULTS

74 Grading of papillary urothelial carcinoma

75 Papillary urothelial carcinoma (UC) exhibits a
76 continuous spectrum of cytological atypia and archi-
77 tectural disorder on a scale from low grade tumors
78 resembling normal urothelium to high grade tumors
79 with pronounced cytoarchitectural atypia. Grading
80 is the most important factor in the treatment deci-
81 sion for patients with noninvasive papillary UC [16,
82 17], which is largely based on the degree of cyto-
83 logical atypia of the urothelium lining fibrovascular
84 cores, such as nuclear enlargement, pleomorphism,
85 hyperchromasia, coarse chromatin, prominent nucle-
86 ols, irregular nuclear contours, and frequent mitoses.
87 Architectural disorders, including complex papillae
88 showing frequent fusion and branching as well as dis-
89 orderly orientation of tumor cells along the papillae
90 (or loss of polarity), are also incorporated into the
91 grading criteria. Several grading systems have been
92 proposed by various organizations since the introduc-
93 tion of the WHO 1973 three-tiered numeric grading
94 system (Fig. 1) [7, 8, 10, 16]. These grading systems
95 can effectively assess the risk of cancer progression

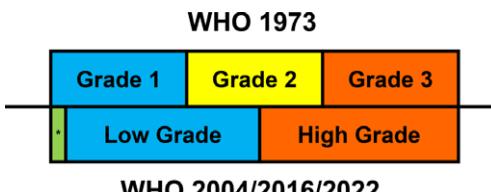


Fig. 1. Correlation among different WHO grading systems of papillary urothelial carcinoma. The 1973 system uses a 3-tier numeric grading, and the 2004/2016/2022 system uses a binary grading. While low grade tumors include most of grade 1 tumors and grade 2 tumors with relatively less atypia, high grade tumors include all grade 3 tumors and grade 2 tumors with more atypia. * Papillary urothelial neoplasm of low malignant potential is a separate entity from papillary UC and corresponds to the very low end of grade 1 tumors.

and recurrence in papillary UC, but they have considerable interobserver variability due to the presence of overlapping morphologic features in different grades [18–20].

The binary grading of papillary UC (low grade vs high grade) continues to be used in the 5th edition of WHO classification. Since it was first proposed in 1998, the binary grading system has been adopted by the WHO in the 3rd and 4th editions as well [7, 8, 10, 16]. Low-grade papillary UC shows mild cytoarchitectural atypia, while high-grade papillary UC exhibits severe cytoarchitectural atypia. An advantage of the binary grading system is that the diagnosis of high-grade papillary UC correlates well with positive urine cytology [21]. In addition, it correlates well with the concept of bladder cancer development along dual papillary/non-papillary track [5, 22]. However, the distinction between low- and high-grade tumors remains somewhat subjective, as similar to previous editions, with the cutoff between mild and severe atypia not clearly defined. Therefore, it is difficult to determine whether papillary UC with moderate or borderline atypia belongs to the low-grade or high-grade group. Although this binary grading system is less prone to interobserver variability than a three- or four-tier grading systems, it oversimplifies the complexity of the grading, because papillary UC shows a continuous spectrum of cytoarchitectural atypia. As the spectrum of changes within one grade is wide in the binary grading system, tumors at different ends of the same grade may have different biologic behaviors and inconsistent clinical outcomes.

Since the introduction of this binary grading system, there has been a significant “grade migration” from low-grade to high-grade in the diagnosis of papillary UC [23, 24]. Pathologists diagnose papil-

lary UC as high-grade at a significantly increased frequency, while the diagnosis of low-grade papillary UC is correspondingly decreasing. However, the “grading migration” does not seem to correlate with disease progression and outcomes in clinical analysis [24]. This grade migration has a significant impact on clinical management, since low-grade and high-grade papillary UC are managed differently. As the cancer grading system is based on a subjective visual analysis of morphology, it needs to be revised based on scientific evidence and validated by independent studies on large patient cohorts. In addition to histologic grades, the risk for cancer recurrence and progression is also related to several other factors, such as tumor size, multifocality, history of prior recurrence, and intravesical therapy [17]. Ancillary studies, such as immunohistochemical (IHC) and molecular tests, may improve the grading reproducibility and lead to a better correlation with clinical outcomes [25, 26]. Mutations in TP53 gene and allelic loss of chromosome 9, particularly in the CDKN2A locus, are common findings in high-grade papillary UC [27]. By IHC, high-grade tumors are often associated with loss of CD44 and increased proliferation activity (e.g. Ki-67 index >5%) [26, 28]. Overall, cancer grading approach is based on microscopic morphology, and the incorporation of ancillary markers is not generally advocated in routine pathology practice.

Papillary urothelial carcinoma with mixed grades

Heterogeneity of cancer grade is a common feature in papillary UC, which occurs in as many as one third of papillary tumors (Fig. 2) [29–31]. Most papillary UCs with mixed grades have a considerable high-grade component (>10%), and these tumors show similar clinical outcomes to those with pure high-grade. However, several studies have demonstrated that papillary tumors with only a minor high-grade component are associated with clinical outcome similar to that of low-grade papillary UC [30–32]. Different thresholds are used to define a minor high-grade component in papillary UC with mixed grades, which may lead to a poor interobserver reproducibility and contribute to “grade migration” [30–32]. In the 5th edition, 5% of the high-grade component is recommended as the cutoff to define the overall grade in papillary UC with mixed grades. The papillary tumors with <5% of high-grade component are classified as “predominantly low-grade with a minor high-grade component”, while those with $\geq 5\%$

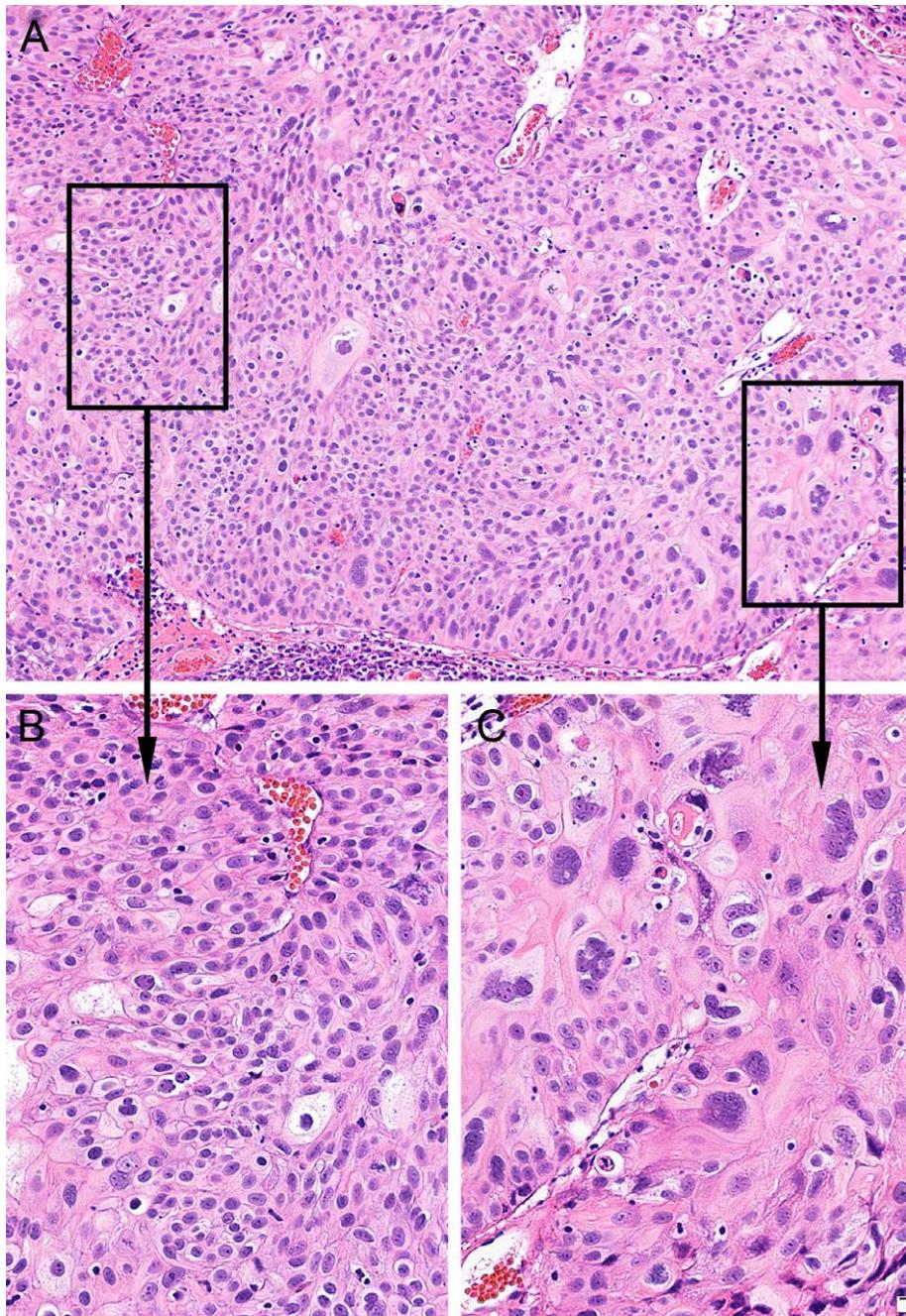


Fig. 2. Papillary urothelial carcinoma mixed grades. A. The tumor shows predominantly low-grade features with focal high-grade ($\times 100$). B. Low-grade component shows mild to moderate cytologic atypia ($\times 200$). C. High-grade component shows severe cytologic atypia ($\times 400$).

197 of high-grade component are classified as high-grade
 198 tumors. This approach may aid the risk stratification
 199 and help optimize the management of patients with
 200 tumors exhibiting different grades. Interestingly, the
 201 Genitourinary Pathology Society (GUPS) recently
 202 recommended a different cutoff for papillary UC

203 with mixed grades [33]. When the high-grade compo-
 204 nent accounts for <10% in papillary UC with mixed
 205 grades, a diagnosis of “noninvasive low-grade papil-
 206 lary UC with a focal (<10%) noninvasive higher grade
 207 component” should be rendered. In addition, it is rec-
 208 commended to add a comment that “There is limited

209 data on the prognostic significance of a minor component of high-grade tumor in an otherwise lower
210 grade carcinoma, and the studies suggest that they
211 generally behave more like low-grade tumors.” Fur-
212 ther large prospective studies are needed to determine
213 the significance of the extent of a high-grade compo-
214 nent in a predominantly low-grade tumor to predict
215 its clinical behavior.

217 **Papillary urothelial neoplasm with low
218 malignant potential**

219 Papillary urothelial neoplasm of low malignant
220 potential (PUNLMP) is retained as a distinct diag-
221 nostic category in the 5th edition. PUNLMP is
222 characterized by papillary fibrovascular structures
223 lined by thickened urothelium that lacks discernible
224 cytological atypia (Fig. 3) [34]. Although the urothe-
225 lium lining appears thicker or more cellular than
226 normal urothelium, it has no loss of cellular polar-
227 ity. Occasionally, PUNLMP may demonstrate an
228 inverted growth pattern [35]. Several studies have
229 shown that PUNLMP has a lower risk of cancer recur-
230 rence and progression than low-grade papillary UC
231 [34–36]. The nomenclature of PUNLMP can avoid
232 the “carcinoma” label on patients with such an indo-
233 lent tumor, but PUNLMP should be followed in the
234 same manner as low-grade papillary UC, as it still
235 carries a low risk for cancer recurrence. However, it
236 may be difficult to differentiate PUNLMP from low-
237 grade papillary UC even among experienced urologic
238 pathologists [37, 38]. One recent study has shown
239 that the pathologic diagnosis of PUNLMP has been
240 significantly decreased in recent years from 31.3%
241 in 1990–2000 to 3.2% in 2000–2010 to 1.1% in
242 2010–2018 [39]. The treatment and follow-up guide-
243 lines for PUNLMP and low-grade papillary UC are
244 not dissimilar in major urological societies [40, 41],
245 suggesting that PUNLMP may be incorporated into
246 low-grade papillary UC as one category [42].

247 **Papillary urothelial neoplasms with an inverted
248 growth pattern**

249 Papillary UC sometimes show an inverted growth
250 pattern, which is characterized by invagination of
251 tumor cells into the lamina propria forming large
252 nests with broad pushing borders (Fig. 4). The
253 stromal involvement does not reach the muscularis
254 propria (MP), unlike nested subtype UC which is
255 usually deeply invasive into the MP. Sometimes it
256 may be difficult to distinguish papillary UC with

257 the inverted growth pattern from invasive UC. The
258 inverted growth pattern shows large nests with broad,
259 smooth, pushing borders and retains the basement
260 membrane around them. Invasive UC is characterized
261 by small and irregularly shaped nests. Furthermore,
262 invasive UC often induces stromal reactive changes,
263 such as retraction artefact, paradoxical differentia-
264 tion, and desmoplasia. Papillary urothelial tumors
265 with an inverted growth pattern exhibit a wide spec-
266 trum of morphologic and cytologic features [43]. In
267 the 5th edition, the diagnosis of inverted urothelial
268 papilloma is generally reserved for those with almost
269 exclusively inverted morphology. In papillary UC, the
270 inverted growth pattern is typically coexistent with
271 the exophytic papillary pattern. When the inverted
272 pattern is prominent (>80%) or exclusive, the desig-
273 nation of “noninvasive papillary UC with an inverted
274 growth pattern” may be used, distinguishing such
275 tumors from invasive UC [16, 33].

276 **Flat urothelial lesions**

277 Urothelial carcinoma *in situ* (UCIS) is the only flat
278 neoplastic entity that is recognized in the 5th edition.
279 UCIS shows severe cytoarchitectural atypia like
280 that in high-grade papillary UC except for papillary
281 formation. These atypical features are usually eas-
282 ily identified at a low to intermediate magnification.
283 UCIS shows several morphologic patterns, such as
284 large cell, small cell, plasmacytoid, pagetoid, and
285 clinging. The presence of these patterns does not
286 have significant clinical implications, except for the
287 plasmacytoid which is associated with discontinuous
288 involvement of the urothelium (Fig. 5) [44, 45]. Rare
289 cases of UCIS with *in situ* glandular differentiation
290 (adenocarcinoma *in situ*) have been reported [46].
291 On IHC, UCIS often shows abnormal full-thickness
292 immunoreactivity for CK20, increased expression of
293 p53, and decreased expression of CD44 [26]. Other
294 markers, such as CK5/6 and Ki-67, may also have
295 some utility in the distinction between CIS and reactive
296 urothelial atypia [26, 45]. However, none of these
297 IHC markers is highly sensitive or specific, especially
298 in equivocal lesions. Overall, histology remains the
299 diagnostic gold standard for UCIS and routine use of
300 IHC is not recommended.

301 Several other flat lesions were described in the
302 4th edition, but they are not recognized as distinct
303 neoplastic lesions in the 5th edition. “Urothelial dys-
304 plasia” is a controversial diagnostic term for a flat
305 lesion that encompasses various changes thought to
306 be preneoplastic in nature but fall short of the diag-

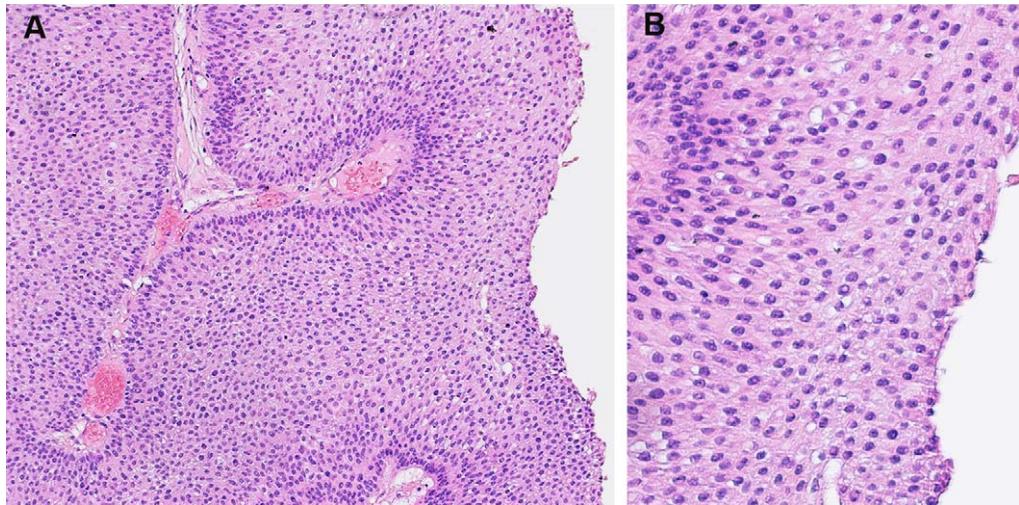


Fig. 3. Papillary urothelial neoplasm of low malignant potential. A. The overlying urothelium is thickened ($\times 100$). B. The urothelium shows minimal cytologic atypia ($\times 200$).

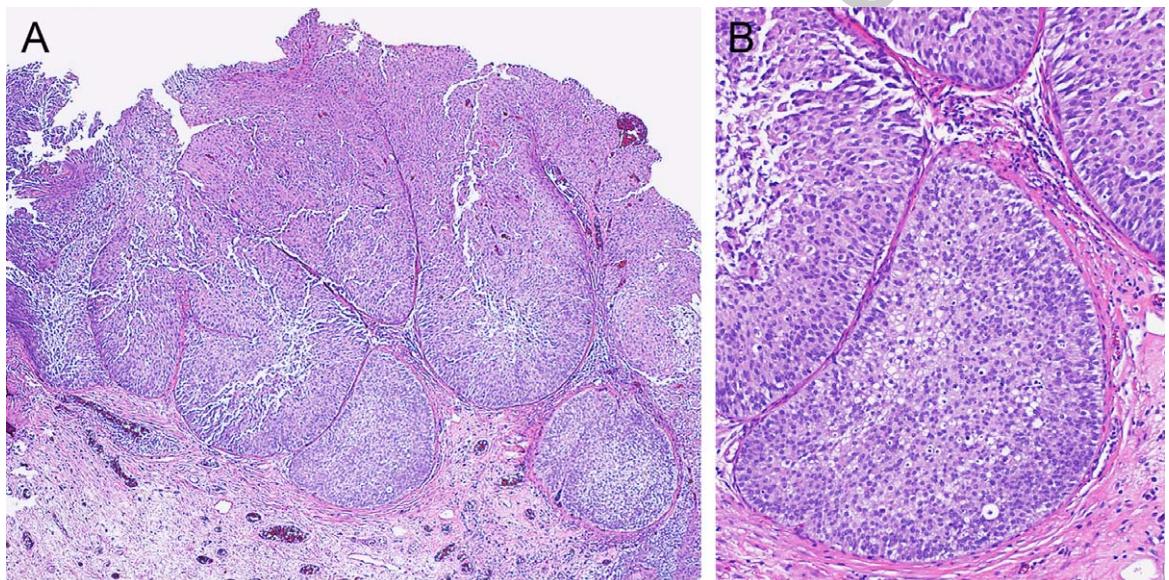


Fig. 4. Papillary urothelial carcinoma shows an inverted growth pattern. A. The tumor shows large nests with broad pushing borders in the lamina propria ($\times 40$). B. The tumor shows low-grade features ($\times 100$).

307 nosis of UCIS. Nonetheless, “Urothelial dysplasia”
 308 is not a synonym of “intraepithelial neoplasia” in the
 309 urinary tract. The lack of well-defined objective cri-
 310 teria has led to poor reproducibility in the diagnosis
 311 of “urothelial dysplasia” and its clinical significance
 312 remains unclear [47, 48]. “Urothelial proliferation of
 313 uncertain malignant potential” (UPUMP) is another
 314 lesion that is no longer recognized as a distinct
 315 entity in the 5th edition. UPUMP includes papillary
 316 and flat urothelial hyperplasia with no or minimal

317 cytologic atypia. The GUPS recommends the term
 318 “atypical urothelial proliferation (AUP)” with a com-
 319 ment suggesting that this lesion may represent a
 320 precursor to an early noninvasive low-grade papillary
 321 urothelial carcinoma, as it often harbors chromo-
 322 some 9 alterations and FGFR3 gene mutations [49].
 323 If flat urothelial hyperplasia exhibits considerable
 324 cytologic atypia that is worrisome for UCIS, the diag-
 325 nostic designation of urothelial dysplasia may be
 326 considered.

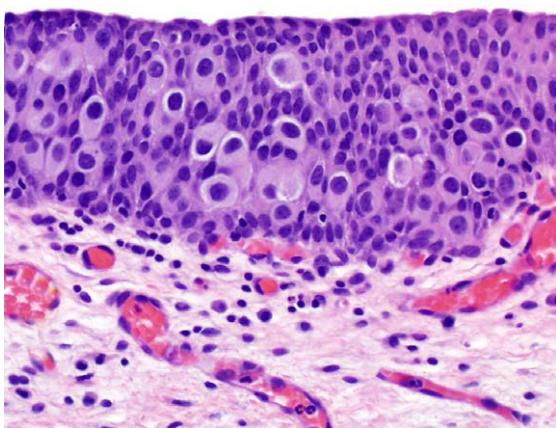


Fig. 5. Urothelial carcinoma *in situ* shows a pagetoid growth pattern ($\times 200$).

327 *pT1* cancer substaging

328 Bladder cancer is staged using the TNM system
 329 in the 5th edition, but *pT1* bladder cancer invading
 330 the lamina propria (LP) exhibits considerable hetero-
 331 geneity in clinical outcome [50, 51]. Upstaging of
 332 *pT1* cancer in subsequent radical cystectomy spec-
 333 iments is common and has been reported in nearly
 334 40% of cases [52]. The depth or extent of LP inva-
 335 sion is a strong predictor of outcome in patients with
 336 *pT1* tumor, although several other factors, such as
 337 tumor size, multifocality, recurrence, lymphovascu-
 338 lar invasion, patient age, and prior treatment, are also
 339 important in the risk stratification [17, 50]. It is gen-
 340 erally believed that *pT1* substaging in transurethral
 341 resection specimens has prognostic value [7, 16, 33,
 342 51]. The extent of LP invasion may be evaluated by
 343 micrometric measurement or based on the distinct
 344 histoanatomical landmarks in the LP, such as mus-
 345 cularis mucosae (MM) and vascular plexus [53–55].
 346 The most common method is to use the MM as an
 347 anatomic landmark - *pT1a* tumor invades above the
 348 MM, and *pT1b* tumor invades into the MM or beyond.
 349 This method is relatively simple and can be per-
 350 formed on small tumors, but it is highly dependent
 351 on specimen's orientation to the surface urothelium.
 352 Furthermore, MM is not always visible in TURBT
 353 specimens because of its discontinuous distribution
 354 or displacement by tumor. It is important to dif-
 355 ferentiate MM from MP in invasive bladder cancer
 356 because of the significant difference in cancer stag-
 357 ing and treatment (Fig. 6) [56]. Sometimes, vascular
 358 plexus in the LP may be used as a substitute for the

359 MM [57]. Others have used percentage of specimen
 360 with invasive tumor, diameter of invasive tumor, num-
 361 ber of invasive tumor foci, and depth of invasion in
 362 millimeters from the basement membrane, but these
 363 methods are time-consuming and not always accu-
 364 rate [58–61]. Some pathologists use focal or extensive
 365 invasion to substage *pT1* disease. Focal invasion or
 366 microinvasion has been defined by the presence of
 367 an invasive tumor involving <1 high power field,
 368 greatest diameter of invasive tumor <1 mm and in
 369 depth of <2 mm, or invasive tumor present above the
 370 muscularis mucosae [51]. It remains unclear which
 371 criterion is the most effective in the *pT1* substag-
 372 ing, and comparisons of various methods are needed
 373 in well-designed prospective studies to assess their
 374 accuracy. The 5th edition recommends that an attempt
 375 to substage *pT1* disease may be made by the pathol-
 376 ogist using any of the above criteria [16].

377 Lymphovascular invasion (LVI) is another risk
 378 factor associated with a high propensity for cancer
 379 recurrence and progression in *pT1* bladder cancer
 380 [62]. However, it may be difficult to assess LVI,
 381 particularly in TURBT specimens, as there are fre-
 382 quent retraction, distortion, and carryover artifacts,
 383 which may mimic LVI. Strict morphologic criteria
 384 such as the presence of endothelial lining, should
 385 be applied in the diagnosis of LVI. The use of IHC
 386 with endothelial markers (CD31, CD34, and D2-40)
 387 can aid the diagnosis of LVI by confirming the pres-
 388 ence of endothelial cells. Endothelial markers are not,
 389 however, recommended as a screening test for LVI in
 390 TURBT or cystectomy specimens [16, 26].

391 *Divergent differentiation and histologic subtype*

392 Bladder UC, particularly invasive UC, has a high
 393 propensity for divergent differentiation along other
 394 nonurothelial lineages leading to the emergence of
 395 squamous, glandular, trophoblastic, and Mullerian
 396 differentiation [63, 64]. Squamous differentiation
 397 characterized by intercellular bridges or various ker-
 398 atinization production is the most common form
 399 of divergent differentiation and reported in 30–40%
 400 of cases [65, 66]. Glandular differentiation is the
 401 second most common divergent differentiation with
 402 up to 18% of bladder UC showing glandular fea-
 403 tures [65]. True glandular differentiation consists
 404 of malignant intestinal glands resembling colorectal
 405 adenocarcinoma and should be distinguished from
 406 the pseudo-glandular luminal spaces in otherwise
 407 conventional UC. Although squamous and glan-
 408 dular differentiation are more frequently observed

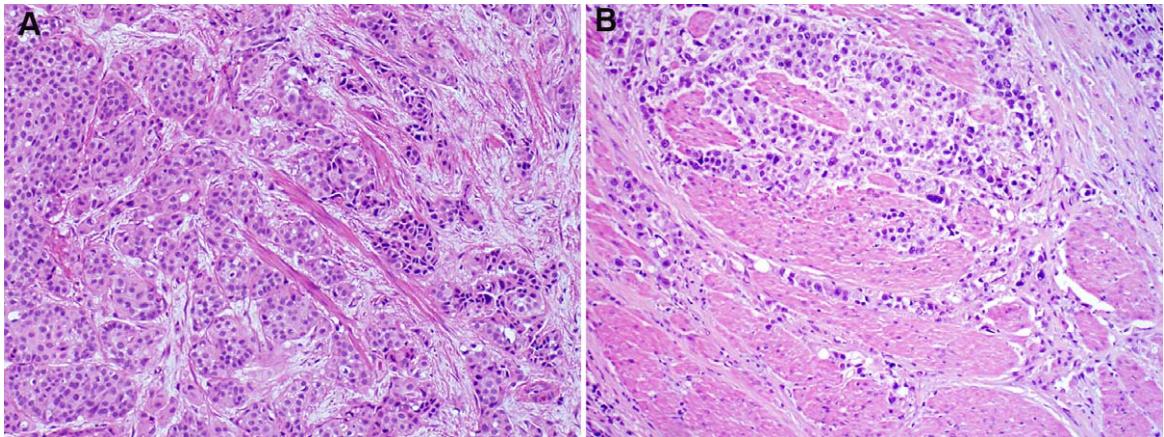


Fig. 6. Urothelial carcinoma invades different types of smooth muscle tissue. A. muscularis mucosae (pT1b) ($\times 100$). B muscularis propria (pT2) ($\times 100$).

in locally advanced diseases, they are not significantly associated with worse cancer-specific survival in stage-by-stage comparison [67]. Rarely, invasive UC may show trophoblastic differentiation with an elevation of β -hCG in serum [68]. Interestingly, a considerable proportion of patients with metastatic UC without apparent trophoblastic histology also have β -hCG elevation, which has been used as a marker for monitoring response to therapy [69]. Müllerian differentiation in bladder UC is usually composed of clear cell adenocarcinoma [70].

Bladder UC may also progress to a variety of distinct histologic subtypes or variants (Table 1) [63, 64]. In the 5th edition, “subtype” is a preferred term, as “variant” may cause confusion with genetics and other fields. Although these subtypes show different microscopic features from those in the conventional UC, they are still intrinsically of urothelial origin (Fig. 7). Some UC subtypes, such as nested, tubular and microcystic subtypes, mimic benign lesions, which may pose a diagnostic challenge. Some subtypes, such as micropapillary, plasmacytoid, sarcomatoid, and small cell carcinoma subtypes, show highly aggressive clinical behaviors. These aggressive subtypes are considered to represent a high-risk factor in the treatment and prognosis, which may warrant a more aggressive treatment than those used for conventional UC. Several UC subtypes demonstrate distinct genomic changes that may underlie their aggressive behaviors [63, 64].

Micropapillary subtype is characterized by small morula-like tumor nests without fibrovascular cores surrounded by empty spaces or lacunae. The presence of multiple small nests within the same lacuna

Table 1
Divergent differentiation and histologic subtype in urothelial carcinoma

- Conventional or usual urothelial carcinoma (UC) - Pure UC with no divergent differentiation or subtype morphology
- UC with Divergent differentiation
 - Squamous
 - Glandular
 - Trophoblastic
 - Mullerian
- UC Subtype
 - Micropapillary
 - Nested
 - Tubular and microcystic
 - Large nested
 - Lymphoepithelioma-like
 - Small cell carcinoma
 - Plasmacytoid
 - Sarcomatoid
 - Lipid-rich
 - Lymphoepithelioma-like
 - Clear cell
 - Giant cell
 - Poorly differentiated

is typical. It has a high propensity for metastasis and is associated with aggressive behavior, which may necessitate an early cystectomy treatment in some patients with non-muscle-invasive disease. Overexpression and amplification of ERBB2 is more frequent in micropapillary UC and may represent a potential target for therapy [71].

Plasmacytoid UC subtype shows discohesive individual tumor cells with eccentric nuclei and abundant eosinophilic cytoplasm which resemble plasma cells. The tumor cells diffusely infiltrate the bladder wall

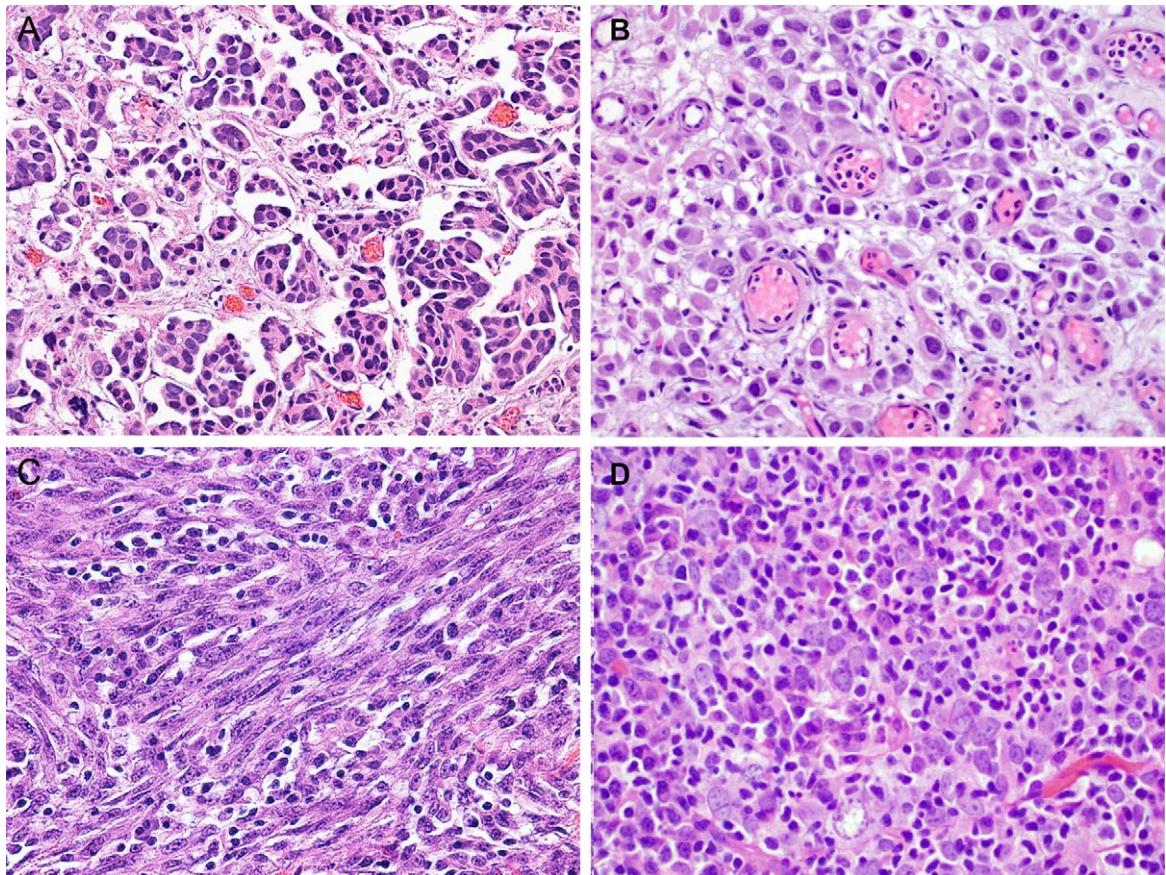


Fig. 7. Different urothelial carcinoma subtypes. A. Micropapillary ($\times 200$). B. Plasmacytoid ($\times 200$). C. Sarcomatoid ($\times 200$). D. Lymphoepithelioma-like subtype ($\times 200$).

454 with minimal stromal reaction and have a high ten-
 455 dency for peritoneal spread, leading to a high rate of
 456 positive resection margin in cystectomy specimens.
 457 The presence of somatic mutations of *CDH1* (leading
 458 to frequent loss of E-cadherin expression) is a hall-
 459 mark molecular feature of these tumors, which has
 460 been documented in approximately 80% of plas-
 461 macytoid subtypes [72].

462 Sarcomatoid UC comprises of mesenchymal neo-
 463 plastic cells with loss of epithelial phenotype admixed
 464 with those showing partial retention of epithe-
 465 lial features. The mesenchymal component may
 466 show features of heterologous differentiation, such
 467 as osteosarcoma, chondrosarcoma, rhabdomyosar-
 468 coma, and angiosarcoma. The survival of patients
 469 with sarcomatoid UC is generally poor, and the pres-
 470 ence of heterologous components may be associated
 471 with even a more adverse behavior [71]. Sarcomatoid
 472 UC is characterized by frequent mutations of *TP53*

473 genes in nearly all cases and inactivating *RB1* muta-
 474 tions in approximately half of them combined with
 475 downregulation of homotypic adherence genes and
 476 dysregulation of the EMT network [15].

477 In the 5th edition, small cell carcinoma is discussed
 478 in a separate chapter dedicated to neuroendocrine
 479 tumors involving the urinary track and male gen-
 480 ital organs. Like its counterparts in the lungs and
 481 other organs, bladder small cell carcinoma is com-
 482 posed of poorly differentiated malignant cells with
 483 scant cytoplasm, high nuclear/cytoplasmic ratio, and
 484 salt and pepper granular chromatin. Similar to sar-
 485 comatoid UC, small cell carcinoma subtype shows
 486 frequent mutations of the *TP53/RB1* genes and
 487 displays lineage plasticity driven by a urothelial-
 488 neural phenotypic switch [73, 74]. It is characterized
 489 by an immune-null phenotype that is depleted of
 490 immune cell infiltration. Furthermore, small cell car-
 491 cinoma expresses a high level of adenosine receptor

492 A2A (ADORA2A), an immune checkpoint receptor,
493 which may represent a potential therapeutic target for
494 this highly lethal subtype of bladder cancer [73].

495 *Molecular classification of muscle-invasive
496 bladder cancer*

497 A number of contemporary studies have ana-
498 lyzed the genomic profile of muscle-invasive bladder
499 cancer (MIBC) on multiple molecular platforms,
500 including somatic DNA mutations, copy number
501 variations, DNA methylation, mRNA expressions,
502 microRNA expressions, microbe analysis, and pro-
503 teomic analysis [11–14, 75]. These comprehensive
504 analyses demonstrated a remarkable molecular diver-
505 sity in MIBC, which may underlie a wide spectrum
506 of clinical behaviors as well as varied responses to
507 conventional and targeted therapies. Several different
508 molecular classification systems based on genomic
509 profiling have been proposed [11–14, 75–78]. The
510 original mRNA classification was proposed
511 by the Lund Group and identified five subcate-
512 gories. The TCGA group identified five molecular
513 subtypes of bladder cancer, while a recent meta-
514 analysis based on 1750 cases of muscle invasive
515 bladder cancer identified six consensus molecu-
516 lar classes: luminal papillary, luminal nonspecified,
517 luminal unstable, stroma-rich, basal/squamous, and
518 neuroendocrine-like. TP53 mutations are frequent
519 in the neuroendocrine-like, basal-squamous, and
520 luminal-unstable subtypes, while FGFR3 mutations
521 are enriched in the luminal-papillary subtype. Over-
522 all, the luminal-unstable subtype shows the most
523 genomic alterations. The MD Anderson and The
524 University of North Carolina groups proposed a clas-
525 sification of bladder cancer with two major categories
526 referred to as luminal and basal subtypes. Although
527 the names and numbers of subtypes are somewhat dif-
528 ferent in these classification systems, there are strong
529 evidences to support that top-level separation occurs
530 at the basal and luminal differentiation checkpoint
531 (Fig. 8). The luminal UC appears to evolve through
532 the papillary track, while the basal UC develops via
533 the nonpapillary track [5]. Although papillary UC are
534 almost exclusively luminal subtype, invasive bladder
535 UC can be luminal or basal subtype. The invasive
536 UC with a luminal expression signature likely evolve
537 from the preexisting papillary tumor and represent a
538 progression of superficial papillary tumors. Further
539 studies revealed that various UC histologic subtypes
540 are associated with characteristic molecular subtypes
541 [15, 73, 79]. For example, micropapillary and plasma-

542 cytoid subtypes are almost exclusively of the luminal
543 subtype [79], while sarcomatoid and small cell sub-
544 types show basal molecular signatures [15, 73, 79].

545 Although the molecular classification of bladder
546 cancer based on the genomic mRNA expression pro-
547 filing provides valuable insights into its biological
548 behavior, it cannot be easily applied to the routine
549 clinical practice because the analytical method is
550 technologically complex and costly. Recent studies
551 have found that IHC may be used to aid the molecu-
552 lar classification of bladder UC [80]. A small set of
553 luminal (GATA3, CK20, and uroplakin II) and basal
554 (CK5/6 and CK14) markers can be effectively used to
555 classify bladder cancers into luminal and basal cat-
556 egories, although the performance of this classifier
557 remains to be validated in large independent cohorts
558 [81].

559 Novel molecular markers have great promise in
560 improving the prognostic power and reproducibility
561 of the current histology-based grading, particularly
562 in the metastatic setting, allowing the identification
563 of patients who may benefit from targeted therapy.
564 It becomes evident that high-quality immunohis-
565 tochemistry and molecular testing are essential
566 in the molecular classification of bladder cancer
567 with significant diagnostic, prognostic and predictive
568 implications. However, the availability of immuno-
569 histochemistry and molecular testing may be limited
570 in low- and middle-income countries. As the WHO
571 classification is proposed for worldwide use, major
572 emphasis has been placed on histopathological cri-
573 teria in the 5th edition. In summary, microscopic
574 features represent the gold standard of pathological
575 classification of bladder cancer but molecular fea-
576 tures represent an emerging auxiliary information
577 aiding the clinical decision process.

CONCLUSIONS

578 Bladder cancer is a heterogeneous disease which
579 exhibits a wide spectrum of clinical and pathologic
580 features. The classification of bladder cancer has
581 been traditionally based on morphologic assessment
582 with the aid of IHC. However, recent genomic stud-
583 ies have revealed that distinct alterations of DNA
584 and RNA in bladder cancer may underlie its diverse
585 clinicopathologic features, leading to the molecular
586 classification of bladder cancer. These advances fun-
587 damentally change our understanding of the disease
588 and expand the diagnostic and therapeutic options
589 for patients affected by bladder cancer. The 5th edi-

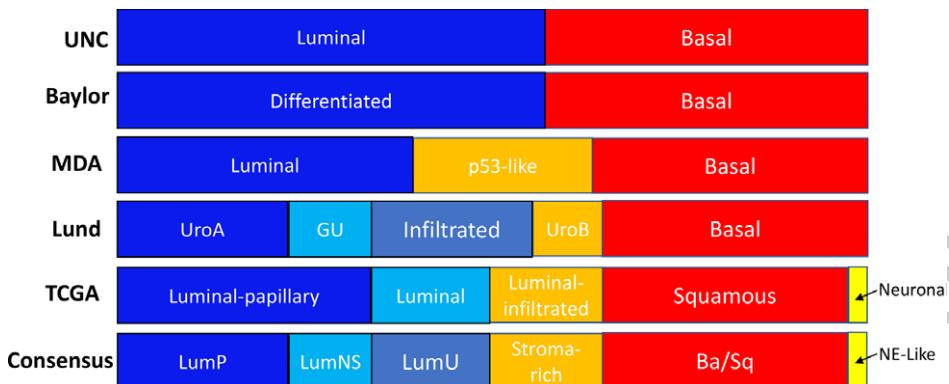


Fig. 8. Different molecular classification systems of muscle-invasive bladder cancers. International consensus classification proposes 6 distinct molecular subtypes, which is based on a meta-analysis of 1750 cases from 18 datasets. Ba/Sq × basal/squamous; LumNS × luminal nonspecified; LumP × luminal papillary; LumU × luminal unstable; MDA × MD Anderson Cancer Center; NE-like × neuroendocrine-like; TCGA × the Cancer Genome Atlas; UNC × University of North Carolina. Modified with permission from Kamoun et al. Eur Urol. 2020;77(4):420-433.

tion of the WHO Classification of Urinary and Male Genital tumors provides significant revisions of bladder cancer classification with an incorporation of new morphologic and genomic data. Although the application of molecular profiling has provided insightful information on the diverse behavior of bladder cancer, morphology remains the gold standard in the taxonomy of bladder cancer. This practical approach with combination of morphologic, immunohistochemical, genomic, and clinical data may represent the optimal paradigm of bladder cancer classification, expanding the diagnostic and therapeutic options for patients affected by bladder cancer.

ACKNOWLEDGMENTS

We would like to thank Mrs. Stephanie Garza for editorial assistance.

FUNDING

This study was supported by Cancer Prevention and Research Institute of Texas (CPRIT) Grant RP220021 to BC.

AUTHOR CONTRIBUTIONS

CCG, BC: Conception, performance of work, interpretation of results, writing and review of the article. SSS: Conception, interpretation of the results, and review of the article.

ETHICAL CONSIDERATIONS

This study, as a literature review is exempt from any requirement for Institutional Review Board approval. No human or animal research was involved in the elaboration of this manuscript.

CONFLICTS OF INTEREST

BC is an Editorial Board member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review. CCG and SSS do not have a conflict of interest associated with this publication.

REFERENCES

- [1] Bladder cancer fact sheet. International Agency for Research on Cancer; 2020. <https://gco.iarc.fr/today/factsheets-cancers>.
- [2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
- [3] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33.
- [4] Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 2017;71(1):96-108.
- [5] Guo CC, Czerniak B. Bladder cancer in the genomic era. Arch Pathol Lab Med. 2019;143(6):695-704.
- [6] Czerniak B, Dinney C, McConkey D. Origins of bladder cancer. Annu Rev Pathol. 2016;11:149-74.
- [7] Moch H HP, Ulbright TM, Retuer VE. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4 ed. Lyon, France: IARC Press; 2016.
- [8] Epstein JI, Amin MB, Reuter VR, Mostofi FK. The World Health Organization/International Society of Urological

649 Pathology consensus classification of urothelial (trans- 714
 650 ional cell) neoplasms of the urinary bladder. Bladder 715
 651 Consensus Conference Committee. *Am J Surg Pathol*. 716
 652 1998;22(12):1435-48. 717
 653 [9] Mostofi FKSL, Torloni H. *Histological typing of urinary 718
 654 bladder tumours*. Geneva, Switzerland: World Health Organization; 719
 655 1973. 720
 656 [10] Eble JSG, Epstein J, Sesterhenn I. *Pathology and genetics 721
 657 of tumours of the urinary system and male genital organs*. 3 722
 658 ed. Lyon, France: IARC Press; 2004. 723
 659 [11] Kamoun A, de Reyniès A, Allory Y, et al. A consensus 724
 660 molecular classification of muscle-invasive bladder cancer. 725
 661 *Eur Urol*. 2020;77(4):420-33. 726
 662 [12] Choi W, Porten S, Kim S, et al. Identification of distinct 727
 663 basal and luminal subtypes of muscle-invasive bladder cancer 728
 664 with different sensitivities to frontline chemotherapy. 729
 665 *Cancer Cell*. 2014;25(2):152-65. 730
 666 [13] Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive 731
 667 molecular characterization of muscle-invasive bladder 732
 668 cancer. *Cell*. 2017;171(3):540-56 e525. 733
 669 [14] Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic sub- 734
 670 types of high-grade bladder cancer reflect the hallmarks 735
 671 of breast cancer biology. *Proc Natl Acad Sci U S A*. 736
 672 2014;111(8):3110-5. 737
 673 [15] Guo CC, Majewski T, Zhang L, et al. Dysregulation of EMT 738
 674 drives the progression to clinically aggressive sarcomatoid 739
 675 bladder cancer. *Cell Reports*. 2019;27(6):1781-93.e1784. 740
 676 [16] Board WCOT. *Urinary and male genital tumours*. 5 ed. 741
 677 Lyon (France): International Agency for Research on Cancer; 742
 678 2022. 743
 679 [17] Kamat AM, Hahn NM, Efsthathiou JA, et al. *Bladder cancer*. 744
 680 *Lancet*. 2016;388(10061):2796-810. 745
 681 [18] van Rhijn BW, van Leenders GJ, Ooms BC, et al. The 746
 682 pathologist's mean grade is constant and individualizes 747
 683 the prognostic value of bladder cancer grading. *Eur Urol*. 748
 684 2010;57(6):1052-7. 749
 685 [19] Soukup V, Čapoun O, Cohen D, et al. Prognostic perfor- 750
 686 mance and reproducibility of the 1973 and 2004/2016 world 751
 687 health organization grading classification systems in non- 752
 688 muscle-invasive bladder cancer: A european association 753
 689 of urology non-muscle invasive bladder cancer guidelines 754
 690 panel systematic review. *Eur Urol*. 2017;72(5):801-13. 755
 691 [20] Compérat EM, Burger M, Gontero P, et al. Grading of 756
 692 urothelial carcinoma and the new "World Health Organisa- 757
 693 tion Classification of Tumours of the Urinary System and 758
 694 Male Genital Organs 2016". *Eur Urol Focus*. 2019;5(3):457- 759
 695 66. 760
 696 [21] Rosenthal DLWE, Kurtycz DFI. *The Paris System for 761
 697 reporting urinary cytology*. Cham (Switzerland): Springer 762
 698 International Publishing; 2016. 763
 699 [22] Sylvester RJ, Rodríguez O, Hernández V, et al. European 764
 700 association of urology (EAU) prognostic factor risk groups 765
 701 for Non-muscle-invasive Bladder Cancer (NMIBC) incor- 766
 702 porating the WHO 2004/2016 and WHO 1973 classification 767
 703 systems for grade: An update from the EAU NMIBC guide- 768
 704 lines panel. *Eur Urol*. 2021;79(4):480-8. 769
 705 [23] Lokeswar SD, Ruiz-Cordero R, Hupe MC, Jorda M, 770
 706 Soloway MS. Impact of 2004 ISUP/WHO classification on 771
 707 bladder cancer grading. *World J Urol*. 2015;33(12):1929-36. 772
 708 [24] Klaassen Z, Soloway MS. European Association of Urol- 773
 709 ogy and American Urological Association/Society of 774
 710 Urologic Oncology Guidelines on risk categories for non- 775
 711 muscle-invasive bladder cancer may lead to overtreatment 776
 712 for low-grade Ta bladder tumors. *Urology*. 2017;105: 777
 713 14-7. 778

[25] Akgul M, MacLennan GT, Cheng L. The applicability and utility of immunohistochemical biomarkers in bladder pathology. *Hum Pathol*. 2020;98:32-55.

[26] Amin MB, Trpkov K, Lopez-Beltran A, Grignon D. Best practices recommendations in the application of immunohistochemistry in the bladder lesions: Report from the International Society of Urologic Pathology consensus conference. *Am J Surg Pathol*. 2014;38(8):e20-34.

[27] Cheng L, Zhang S, MacLennan GT, Williamson SR, Lopez-Beltran A, Montironi R. Bladder cancer: Translating molecular genetic insights into clinical practice. *Hum Pathol*. 2011;42(4):455-81.

[28] Quintero A, Alvarez-Kindelan J, Luque RJ, et al. Ki-67 MIB1 labelling index and the prognosis of primary TaT1 urothelial cell carcinoma of the bladder. *Journal of Clinical Pathology*. 2006;59(1):83-8.

[29] Cheng L, Neumann RM, Nehra A, Spotts BE, Weaver AL, Bostwick DG. Cancer heterogeneity and its biologic implications in the grading of urothelial carcinoma. *Cancer*. 2000;88(7):1663-70.

[30] Gofrit ON, Pizov G, Shapiro A, et al. Mixed high and low grade bladder tumors—are they clinically high or low grade? *J Urol*. 2014;191(6):1693-6.

[31] Reis LO, Taheri D, Chaux A, et al. Significance of a minor high-grade component in a low-grade noninvasive papillary urothelial carcinoma of bladder. *Human pathology*. 2016;47(1):20-5.

[32] May M, Brookman-Amissah S, Roigas J, et al. Prognostic accuracy of individual uropathologists in noninvasive urinary bladder carcinoma: A multicentre study comparing the 1973 and 2004 World Health Organisation classifications. *Eur Urol*. 2010;57(5):850-8.

[33] Amin MB, Comperat E, Epstein JI, et al. The genitourinary pathology society update on classification and grading of flat and papillary urothelial neoplasia with new reporting recommendations and approach to lesions with mixed and early patterns of neoplasia. *Adv Anat Pathol*. 2021;28(4):179-95.

[34] Holmäng S, Hedelin H, Anderström C, Holmberg E, Busch C, Johansson SL. Recurrence and progression in low grade papillary urothelial tumors. *J Urol*. 1999;162(3 Pt 1):702-7.

[35] Maxwell JP, Wang C, Wiebe N, Yilmaz A, Trpkov K. Long-term outcome of primary Papillary Urothelial Neoplasm of Low Malignant Potential (PUNLMP) including PUNLMP with inverted growth. *Diagn Pathol*. 2015;10:3.

[36] Pan CC, Chang YH, Chen KK, Yu HJ, Sun CH, Ho DM. Prognostic significance of the 2004 WHO/ISUP classification for prediction of recurrence, progression, and cancer-specific mortality of non-muscle-invasive urothelial tumors of the urinary bladder: A clinicopathologic study of 1,515 cases. *Am J Clin Pathol*. 2010;133(5):788-95.

[37] Tuna B, Yörükoglu K, Düzcan E, et al. Histologic grading of urothelial papillary neoplasms: Impact of combined grading (two-numbered grading system) on reproducibility. *Virchows Archiv*. 2011;458(6):659.

[38] Yorukoglu K, Tuna B, Dikicioglu E, et al. Reproducibility of the 1998 World Health Organization/International Society of Urologic Pathology classification of papillary urothelial neoplasms of the urinary bladder. *Virchows Archiv*. 2003;443(6):734-40.

[39] Hentschel AE, van Rhijn BWG, Bründl J, et al. Papillary urothelial neoplasm of low malignant potential (PUN-LMP): Still a meaningful histo-pathological grade category for Ta, noninvasive bladder tumors in 2019? *Urologic Oncology: Seminars and Original Investigations*. 2020;38(5):440-8.

779 [40] Babjuk M, Burger M, Compérat EM, et al. European association of urology guidelines on non-muscle-invasive bladder 844
780 cancer (TaT1 and Carcinoma *In Situ*) - 2019 update. European Urology. 2019;76(5):639-57. 845
781
782 [41] Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment 846
783 of non-muscle invasive bladder cancer: AUA/SUO 847
784 guideline. The Journal of Urology. 2016;196(4):1021-9. 848
785
786 [42] Jones TD, Cheng L. Noninvasive papillary urothelial neoplasia (NIPUN): Renaming cancer. Urologic Oncology: 849
787 Seminars and Original Investigations. 2021;39(5):286-90. 850
788
789 [43] Hodges KB, Lopez-Beltran A, MacLennan GT, Montironi R, 851 Cheng L. Urothelial lesions with inverted growth patterns: 852 Histogenesis, molecular genetic findings, differential 853 diagnosis and clinical management. BJU Int. 2011;107(4):532-7. 854
790
791 [44] Compérat E, Jacquet SF, Varinot J, et al. Different subtypes 855 of carcinoma *in situ* of the bladder do not have a different 856 prognosis. Virchows Arch. 2013;462(3):343-8. 857
792
793 [45] McKenney JK. Urothelial carcinoma *in situ*: Diagnostic 858 update. Pathology. 2021;53(1):86-95. 859
794
795 [46] Chan TY, Epstein JI. *In situ* adenocarcinoma of the bladder. 860 Am J Surg Pathol. 2001;25(7):892-9. 861
796
797 [47] McKenney JK. Precursor lesions of the urinary bladder. 862 Histopathology. 2019;74(1):68-76. 863
798
799 [48] Cheng L, Cheville JC, Neumann RM, Bostwick DG. Natural 864 history of urothelial dysplasia of the bladder. Am J Surg 865 Pathol. 1999;23(4):443-7. 866
800
801 [49] van Oers JM, Adam C, Denzinger S, et al. Chromosome 867 9 deletions are more frequent than FGFR3 mutations in 868 flat urothelial hyperplasias of the bladder. Int J Cancer. 869 2006;119(5):1212-5. 870
802
803 [50] Kardoust Parizi M, Enikeev D, Glybochko PV, et al. Prognostic 871 value of T1 substaging on oncological outcomes in 872 patients with non-muscle-invasive bladder urothelial 873 carcinoma: A systematic literature review and meta-analysis. 874 World Journal of Urology. 2020;38(6):1437-49. 875
804
805 [51] Amin SEMB, Greene FL, et al., AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017. 876
806
807 [52] Shariat SF, Palapattu GS, Karakiewicz PI, et al. Discrepancy 877 between clinical and pathologic stage: Impact on prognosis 878 after radical cystectomy. Eur Urol. 2007;51(1):137-49; 879 discussion 149-51. 880
808
809 [53] Sanfrancesco J, McKenney JK, Leivo MZ, Gupta S, Elson P, 881 Hansel DE. Sarcomatoid urothelial carcinoma of the bladder: 882 Analysis of 28 cases with emphasis on clinicopathologic 883 features and markers of epithelial-to-mesenchymal transition. 884 Archives of Pathology & Laboratory Medicine. 2016;140(6):543-51. 885
810
811 [54] Fransen van de Putte EE, Otto W, Hartmann A, et al. Metric 886 substage according to micro and extensive lamina propria 887 invasion improves prognostics in T1 bladder cancer. Urol 888 Oncol. 2018;36(8):361.e367-1.e313. 889
812
813 [55] Leivo MZ, Sahoo D, Hamilton Z, et al. Analysis of T1 bladder 890 cancer on biopsy and transurethral resection specimens: 891 Comparison and ranking of T1 quantification approaches 892 to predict progression to muscularis propria invasion. Am J 893 Surg Pathol. 2018;42(1):e1-10. 894
814
815 [56] Hwang MJ, Kamat AM, Dinney CP, Czerniak B, Guo CC. 895 Bladder cancer involving smooth muscle of indeterminate 896 type or muscularis mucosae in transurethral biopsy specimens. 897 Am J Clin Pathol. 2020;154(2):208-14. 898
816
817 [57] Paner GP, Ro JY, Wojcik EM, Venkataraman G, Datta MW, 899 Amin MB. Further characterization of the muscle layers and 900 lamina propria of the urinary bladder by systematic histologic 901 mapping: Implications for pathologic 902 staging of invasive urothelial carcinoma. Am J Surg Pathol. 903 2007;31(9):1420-9. 904
818
819 [58] Cheng L, Weaver AL, Neumann RM, Scherer BG, Bostwick 905 DG. Substaging of T1 bladder carcinoma based on the depth 906 of invasion as measured by micrometer: A new proposal. 907 Cancer. 1999;86(6):1035-43. 908
820
821 [59] Lopez-Beltran A, Cheng L. Stage T1 bladder cancer: Diagnostic 909 criteria and pitfalls. Pathology. 2021;53(1):67-85. 910
822
823 [60] Brimo F, Wu C, Zeizafoun N, et al. Prognostic factors 911 in T1 bladder urothelial carcinoma: The value of recording 912 millimetric depth of invasion, diameter of invasive 913 carcinoma, and muscularis mucosa invasion. Hum Pathol. 914 2013;44(1):95-102. 915
824
825 [61] van Rhijn BW, van der Kwast TH, Alkhateeb SS, et al. A 916 new and highly prognostic system to discern T1 bladder 917 cancer substage. Eur Urol. 2012;61(2):378-84. 918
826
827 [62] Mathieu R, Lucca I, Rouprêt M, Briganti A, Shariat SF. 919 The prognostic role of lymphovascular invasion in urothelial 920 carcinoma of the bladder. Nat Rev Urol. 2016;13(8): 921 471-9. 922
828
829 [63] Lopez-Beltran A, Henriques V, Montironi R, Cimadamore 923 A, Raspollini MR, Cheng L. Variants and new entities of 924 bladder cancer. Histopathology. 2019;74(1):77-96. 925
830
831 [64] Amin MB. Histological variants of urothelial carcinoma: 926 Diagnostic, therapeutic and prognostic implications. Mod 927 Pathol. 2009;22(Suppl 2):S96-118. 928
832
833 [65] Wasco MJ, Daignault S, Zhang Y, et al. Urothelial carcinoma 929 with divergent histologic differentiation (mixed histologic 930 features) predicts the presence of locally advanced bladder 931 cancer when detected at transurethral resection. Urology. 932 2007;70(1):69-74. 933
834
835 [66] Linder BJ, Boorjian SA, Cheville JC, et al. The impact 934 of histological reclassification during pathology re-review— 935 evidence of a Will Rogers effect in bladder cancer? J Urol. 936 2013;190(5):1692-6. 937
836
837 [67] Kim SP, Frank I, Cheville JC, et al. The impact of squamous 938 and glandular differentiation on survival after radical cystectomy 939 for urothelial carcinoma. J Urol. 2012;188(2):405-9. 940
838
839 [68] Przybycin CG, McKenney JK, Nguyen JK, et al. Urothelial 941 carcinomas with trophoblastic differentiation, including 942 choriocarcinoma: Clinicopathologic series of 16 cases. Am 943 J Surg Pathol. 2020;44(10):1322-30. 944
840
841 [69] Douglas J, Sharp A, Chau C, et al. Serum total hCG β 945 level is an independent prognostic factor in transitional 946 cell carcinoma of the urothelial tract. Br J Cancer. 947 2014;110(7):1759-66. 948
842
843 [70] Grosser D, Matoso A, Epstein JI. Clear cell adenocarcinoma 949 in men: A series of 15 cases. Am J Surg Pathol. 950 2021;45(2):270-6. 951
844
845 [71] Ching CB, Amin MB, Tubbs RR, et al. HER2 gene amplification 952 occurs frequently in the micropapillary variant 953 of urothelial carcinoma: Analysis by dual-color *in situ* 954 hybridization. Mod Pathol. 2011;24(8):1111-9. 955
846
847 [72] Al-Ahmadi HA, Iyer G, Lee BH, et al. Frequent somatic 956 CDH1 loss-of-function mutations in plasmacytoid variant 957 bladder cancer. Nature Genetics. 2016;48(4):356-8. 958
848
849 [73] Yang G, Bondaruk J, Cogdell D, et al. Urothelial-to-neural 959 plasticity drives progression to small cell bladder cancer. 960 iScience. 2020;23(6):101201. 961
850
851 [74] Chang MT, Penson A, Desai NB, et al. Small-cell 962 carcinomas of the bladder and lung are characterized by a 963 convergent but distinct pathogenesis. Clinical Cancer 964 Research: An Official Journal of the American 965 Association for Cancer Research. 2018;24(8): 966 1965-73. 967
852
853

909 [75] Cancer Genome Atlas Research N. Comprehensive molecu- 924
910 lar characterization of urothelial bladder carcinoma. *Nature*. 925
911 2014;507(7492):315-22.
912 [76] Seiler R, Ashab HAD, Erho N, et al. Impact of molecular 926
913 subtypes in muscle-invasive bladder cancer on predict- 927
914 ing response and survival after neoadjuvant chemotherapy. 928
915 *European Urology*. 2017;72(4):544-54.
916 [77] Sjödahl G, Lauss M, Lövgren K, et al. A molecular tax- 929
917 onomy for urothelial carcinoma. *Clinical Cancer Research: An Official Journal of the American Association for Cancer 930
918 Research*. 2012;18(12):3377-86.
919 [78] Mo Q, Nikolos F, Chen F, et al. Prognostic power of a 931
920 tumor differentiation gene signature for bladder urothelial 932
921 carcinomas. *JNCI: Journal of the National Cancer Institute*. 933
922 2018;110(5):448-59.
923

[79] Guo CC, Dadhania V, Zhang L, et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. *Eur Urol*. 2016;70(4):611-20.
[80] Dadhania V, Zhang M, Zhang L, et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. *EBioMedicine*. 2016;12:105-17.
[81] Guo CC, Bondaruk J, Yao H, et al. Assessment of luminal and basal phenotypes in bladder cancer. *Sci Rep*. 2020;10(1):9743.